Australian Rare Earths

Australian Alternative Energy Forum


Not Really a Forum, more of my memory aid.


Comments on this forum should never be taken as investment advice.


Go Back   Alternative Energy Forums > Alternative Energy Discussion > Lithium

Reply
 
Thread Tools Display Modes
  #1  
Old 01-12-2016, 01:19 AM
Sparty Sparty is offline
Administrator
 
Join Date: Mar 2009
Posts: 1,734
Default Six types of lithium ion batteries, as well as their compositions and common uses

Lithium-ion batteries are essential to modern technology, powering smartphones, laptops, medical devices and even electric cars.

However it is important to note that rather than using lithium metal for battery technologies, manufacturers commonly use lithium carbonate or lithium hydroxide. Moreover, there is more than just one type of lithium ion-battery, and not all are created equal.
Several lithium compounds may be combined with a variety of other materials in order to create lithium batteries, such as lithium cobalt oxide. Below, Lithium Investing News looks at six types of lithium ion batteries, as well as their compositions and common uses.

Lithium Cobalt Oxide
Also known as lithium cobalate or lithium-ion-cobalt batteries, lithium cobalt oxide batteries are made from lithium carbonate and cobalt. Due to their very high capacity, these batteries are used for cellphones, laptops and electronic cameras. The battery has a cobalt oxide cathode and a graphite carbon anode; during discharge, lithium ions move from the anode to the cathode, with the flow reversing on charge.
This type of battery has some drawbacks, including a shorter lifespan and a limited specific power. That means that devices created with these batteries require relatively frequent charging ? as smartphone owners can attest. Additionally, Battery University notes these batteries are not as safe as other types.

Lithium Manganese Oxide

Lithium manganese oxide batteries are also commonly called lithium manganate or lithium-ion-manganese batteries. They may also be referred to as li-manganese or spinel. The technology for this type of battery was first discovered in the 1980s, with the first publication on the subject appearing in the Materials Research Bulletin in 1983. The first commercial lithium ion cell made with a lithium manganese oxide as a cathode material was produced in 1996 by Moli Energy.
Lithium manganese oxide batteries are notable for their high thermal stability, and are also safer than other types of lithium-ion batteries. For this reason, they are often used in medical equipment and devices, but they may also be used in power tools, electric bikes and electrical hobby uses. It is also possible to use lithium manganese oxide batteries to power laptops and electric power-train cars.

Lithium Iron Phosphate
Lithium iron phosphate batteries, also known as li-phosphate batteries, use phosphate as a cathode. Li-phosphate batteries benefit from low resistance properties, which enhance their safety and thermal stability.
Other benefits include durability and a long life cycle ? fully charged batteries can be stored with little change to the total life span of the battery?s charge. Li-phosphate batteries are often the most cost-effective option as well, when their long life cycle is taken into consideration. However, the lower voltage of the li-phosphate battery means that it has less energy than other types of lithium batteries, as lower temperatures reduce performance.
Accordingly, these batteries are often used in electric motorcycles as well as other applications that need a long life cycle and significant safety. Electric cars often use these batteries as well, according to Battery Space.


Lithium Nickel Manganese Cobalt Oxide
Also known as lithium-manganese-cobalt-oxide batteries, or NMC, lithium nickel manganese cobalt oxide batteries are made of several materials common in other lithium iron batteries. These involve a cathode combination of nickel, manganese and cobalt.
Like other varieties of lithium-ion batteries, NMC batteries can have either a high specific energy or high specific power. They cannot, however, have both properties. This battery is most common in power tools and in powertrains for vehicles.
The cathode combination ratio is usually one-third nickel, one-third manganese and one-third cobalt, meaning that the raw material cost is lower than for other options, as cobalt on its own can be quite expensive. According to Battery university, this battery is also commonly preferred for electric vehicles due to its very low self-heating rate.

Lithium Nickel Cobalt Aluminum Oxide
Lithium nickel cobalt aluminum oxide batteries are also called NCA batteries, and are increasingly important in electric powertrains and in grid storage. NCA batteries are not common in the consumer industry, but are promising for the automotive industry. NCA batteries provide a high-energy option with a good lifespan, even though it is not as safe a battery as it could be and is quite costly. The Boston Consulting Group notes that NCA batteries must be accompanied in cars by safety measures that monitor the performance and behavior of these batteries to keep drivers secure.
The Argonne National Laboratory has conducted research into the potential of NCA batteries and the possible materials issues associated with them. Assuming the market share of electric vehicles increases, the demand for lithium in the US, given the consistent use of NCA batteries in these vehicles, could skyrocket.

Lithium Titanate
Finally, lithium titanate, also known as li-titanate, is a class of battery that allows for ever more applications. The main advantage of the li-titanate battery is its remarkably fast recharge time, thanks to its advanced nanotechnology, writes Battery Space.

Currently, manufacturers of electric automobiles and bikes use li-titanate batteries, and there is a potential for this type of battery to be used in electric buses for public transportation. However, these batteries have lower inherent voltage, or lower energy density, than other lithium-ion batteries, which can present issues with powering vehicles efficiently.

Still, the density of lithium titanate batteries is still higher than other non-lithium-ion batteries, which is a plus. Applications for these batteries can include military and aerospace uses, and they may also be used for storing wind and solar energy and creating smart grids. Furthermore, Battery Space suggests these batteries could also be used in system-critical backups for power systems.

http://investingnews.com/daily/resou...ion-batteries/

 

Disclaimer: The author of this post, may or may not be a shareholder of any of the companies mentioned in this column. No company mentioned has sponsored or paid for this content. Comments on this forum should never be taken as investment advice.

Reply With Quote
Reply

Thread Tools
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On

Forum Jump


All times are GMT. The time now is 04:08 AM.


Powered by vBulletin® Version 3.8.1
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.